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The entropy of coupled map lattices with respect to the group of space-time 
translations is considered. We use the notion of generalized Lyapunov spectra 
to prove the analogue of the Ruelle inequality and the Pesin formula. 
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1. I N T R O D U C T I O N  

The behavior of finite-dimensional hyperbolic diffeomorphisms ts one of 
the best-developed branches of dynamical systems theory. Therefore the 
natural question arises as to which features of this behavior persist in the 
infinite-dimensional setting. 

The simplest example to begin with is coupled map lattices. Here the 
configuration space X is the product of the countable number of copies of 
finite-dimensional manifolds X = I-I; X;. In this paper the index i runs over 
integers ("one-dimensional lattice"). The map �9 is a perturbation of the 
product of "uncoupled" diffeomorphisms (f(x));= f(x,.) due to an interac- 
tion J which is translation invariant and rapidly decreasing in space. The 
last assumption can be formalized mathematically in many different ways. 
The simplest possibility is to require that f is a hyperbolic map and J is so 
small that methods of stability theory can be applied. Under these condi- 
tions it was shown in refs. 1 and 5 that the basic results of the finite-dimen- 
sional theory such as the stable-manifold theorem, the construction of 
Markov partitions, and the existence of SBR measure remain valid. The 
purpose of this paper is to generalize the entropy formulas. 
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Let us recall that the classical Pesin formula states that in the ergodic 
case the measure-theoretic entropy is equal to the sum of positive 
Lyapunov exponents. It is based on the Oselede~ theorem. So the first 
problem is to obtain the counterpart to this theorem. The simplest proof of 
Oselede~ theorem 16) proceeds as follows. Let 2ct")(x)>~2~"l(x)>~ . . .  >1 

�91 2, (x) be the eigenvalues of [(dff~"'(x))* (dqS"'(x))] j/2. Consider s ; ' ( x )=  
~ = ~ In 2~"l(x). The existence of the limit lim . . . . . . .  ( 1 /m)  sti '''~ follows by the 
subadditive ergodic theorem since one can interpret exp s~ '''~ as the largest 
eigenvalue of dr acting on j-forms. This approach succeeds also in infinite 
dimensions if dq~ is a compact operator, c3'9~ In our situation the last 
assumption is never valid because of the translation invariance. However, 
a natural generalization arises if we want to compute the entropy with 
respect to the group of the space- t ime  translations, that is, the "measure- 
theoretic entropy of the time shift per degree of freedom" rather then just 
the measure-theoretic entropy of the time shift. In this case we should 
average by the number of degrees of freedom N and perform the limit as 
N tend to infinity before applying the traditional arguments. This program 
was partly carried out in ref. 12 for another dynamical system: the hard- 
core gas in an infinite vessel. The above-mentioned approach to the 
Oselede6 theorem seems to be more natural than doing time averaging 
before the space averaging because while our system can be considered as 
a small perturbation of a finite-dimensional one for any f i x e d  moment of 
time, the time average limit depends essentially on the whole infinite- 
dimensional space. 

The important difference from the finite-dimensional case is that the 
generalized Lyapunov spectrum so obtained does not correspond to any 
invariant splitting of the tangent bundle, not to mention foliations. So its 
dynamical importance is not clear. However, in this paper we show that 
the counterparts to both the Ruelle inequality and the Pesin formula hold 
if the ordinary Lyapunov spectrum is replaced by the generalized one. 

The structure of the paper is the following. Section 2 contains the precise 
assumptions about the interaction J. In Section 3 we define the expansion 
rate, which is the mean value of the sum of positive Lyapunov exponents. 
The existence of the limiting quantity is demonstrated in Section 4. Our 
arguments here are similar to those of ref. 11. After the existence is estab- 
lished, the RueUe inequality follows by exactly the same arguments as in 
Ruelle's original paper. ~7) This is discussed in Section 5. In Section 6 we 
recall the construction of the SBR measure for coupled map lattices given 
in ref. 5. The Pesin formula is proven in Section 7. The reason why it holds 
is that in the hyperbolic case the convergence in the Pesin formula for 
finite-dimensional system whose limit is our coupled map lattice is uniform 
in the number of degrees of freedom. The proof of the Pesin formula gives 
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an affirmative answer to a general question posed in ref. I 1 for our very 
special case. 

Since it is interesting to find the weakest possible conditions under 
which this theory holds, we do not impose any hyperbolicity conditions in 
Sections 2-5. Of course this paper is only the first step toward under- 
standing the entropy properties of differential infinite-dimensional systems. 

2. COUPLED M A P  LATTICES 

Here we define the system with which we deal. ~51 Let X be a compact 
Riemann manifold. Choose a countable number of copies X; of X and set 
X = I-~?=~I- ~ X i ,  X _ I--IN2 X i ,  X N = X N Elements of X are _ N I . N 2 - - 1 1 i = N  I -- . N "  

denoted by x = {x;} ~=+'~-_~ and elements of XN by x~N( We write S for the 
space shift (S(x))~ = x~+l. Denote by PN,. N,., PN and QN the natural projec- 
tions PN,. U_,: X ---' XN,. N2, PN: X ~ XN and QN: XN --" XN_ ~. The distances 
on X and XNI. N_, are given by d(x, y ) =  sup/p(xi, Yi), where p is the dis- 
tance on X. We write Vr = T.,.~(XA. The tangent space V(x) = TxX may 
be identified with G~ V;(x;), with Ilvll =sup~ IIv,-II. We set 

V NI" N2(X) = {~  Vi(K) ,  V N ( x )  = V 0. N -  1 

i = N i  

(note, however, that X N = X N ,  N)  and PN,,N, and PN a r e  the corre- 
sponding projections. We also consider the space H(x) of vectors with a 
finite/2-norm [Ivll2 = (Z; [Iv[lZ) I/2. 

Now we define our map. Let f be a diffeomorphism of X and f be the 
diffeomorphism of X given by (f(x));= f(x/). We study diffeomorphisms of 
the form q~ = Jo f, where J is an interaction map defined below. Let Jo be 
a map Jo: X ~ X such that there exist constants K~ and x~ < 1 and map- 
pings J[~'l: ~F N ~ X such that 

dc,( Jr x', Jr N- "QN) <~ K, h.N 

(N) dc:(Jo, Jo PN)<~KIK~ ~ 

(1) 

(2) 

A (K~,x , )  interaction is given by (J (x) ) i=SiJoS-J(x) .  Since J is 
S-invariant, ~ S  = SqS. More general interactions can be considered as long 
as they satisfy conditions (3), (4) below. Let D',','(x) be the diagonal part of 
dqS"', that is, D',','v = Pi .... ~+,, d~"'v if v E V;(x). Clearly (I) and (2) imply 

d~:  H(x) ~ H(~x)  and lidS[[2 ~< Kz (3) 
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[where K2=K~/(1--KI) ] and given e, m there exists no=no(m) such that 
for all n/> no 

[I D',','(x) - dC,"'(x)II _~ ~< ~ (4) 

Conditions (3) and (4) guarantee the existence of the expansion rate 
proven in Section 4. 

3. EXPANSION RATE 

In order to define the expansion rate we need some extra notations. 
If E and F are Hilbert spaces and A : E ~ F is a linear operator, we set 
IAI=v/A*A. In case E is finite-dimensional we denote by 2,(A)>~ 
22(A) >/ .. .  i> 2,,(A) the eigenvalues of IAI: E ~  E and det A is the determi- 
nant of IAI. We call v(A) the normalized counting measure of the eigen- 
values v(A)=(1/dimE)Y'.j O~.jc..~l. The expansion rate of A can be defined 
as follows: 

R(A)= ~ ln2j(A)=dimEIln+(t)dv(A)(t  ) 
*:',j( A } ~> I 

where In § t = max(0, In t). Usually we consider the restriction of A to some 
finite-dimensional subspace E ~ E .  To avoid long subscripts we write 
~.j(A I E), det(A I/~) .... instead of 2j(Ale), det(AIE) ..... For example, 

R(A) = m a x  In det(A I/~) (5) 
E c E  

Now we collect for future use some elementary properties of v(A) and 
R(A). The proofs are based on the observation that the inequality 

- - {  t N v(A)([0, t])~" d i ~  v(A)([t, ~] )>~d im E 

is equivalent to the existence of the subspace /~ of the dimension N on 
which (Ae, Ae) >1 t2(e, e) [ (Ae, Ae) <~ t2(e, e) respectively]. 

Proposition 1. Let IIAII ~ a ;  then: 

(1) If IlBll~<~<a, then 

v(A)([~//~ + 3ea, ~ ] ) ~ <  v(A + B)([ t t ,  t2]) 

<~ v(A)( [q/~l - 3ea, ~ + 3ea]) 
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(2) I f s  c o d i m s  then 

2n 
[v(A)([t, ~ ] ) - - v ( A  I/~)([t, oo)[ ~<dim~ 

(3) I f E = E ~  @E2, A(E)=A(EI)•A(E2), then 

dim E,  
v(A)=dim E v(A l El) + d~m E V(A lE~) 

(4) If (., �9 )~ and (., �9 )~. are other scalar products on E and F, respec- 
tively, such that (l/m) I1" I1~ ~ ~< I1" I1~. r ~< ~ I1" II1.,, then 

v(A) ([ o~t,, ~] <~ v'A)([ t,, t2]) <. v(A) ([ ~, ott2] ) 

where in v'(A), A* and IAI are calculated using (., .)' instead o f ( . ,  .). 

C o r o l l a r y  1. There exists a constant Cl such that: 

(1) If IIBII ~<e~<llA[I, then 

IR(A + B) - R(A)I <~ Ci x/e ILAll dim E 

(2) We have 

IR(A IE , ) - -R(A IE2) I ~< Cl(dim(E, + E z ) -  dim(E, hE2)  ) IIAII 

(3) If E = E  I GE~, A(E)=A(EI)OA(E2), then R(A)=R(A [El )+  
R(A I E2). 

(4) If (., - )~, F are other scalar products on E and F respectively, such 
that (1/0t)I.II.~< )}-I}~.v~<~ I}'llt.~, then 

IR(A ) -- R'(A)I ~< q In 0~ dim E 

where in R'(A), A* and [AI are calculated using (., .)' instead o f ( . ,  .). 

Now we are in position to define the expansion rate of cb. Set 

R(x, m, N) = R(d~"'(x) [ VN(x)) 

R,,(X, m, N) = R(D',;'(x) I vN(x)) 

v(x, m, N) = v(d~'"(x) l VU(x)) 

'V m v,,(x, m, N) = (D,,(x)l VN(x)) 
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By the expansion rate of �9 we mean the limit 

R(x)-- , , ! im lim 1 ,x . . . . .  ~-~ R(x, m, N) 

The existence of this limit is proven in the next section. 

4. EXISTENCE OF THE E X P A N S I O N  RATE 

Theorem 1. 

exists almost surely and 

Let p be an S-invariant measure, then the limit 

R(x, m) = lim 
U ~ ~_ N 

R(x, m, N) 

f R(x, m) dp(x) = lim f R(x, m, N) N- .~_ N dp(x) 

Dolgopyat 

If  ~b( t ) dr( x, m, N)( t ) - f ~b( t ) dv ,,( x, m, N)( t ) [ <~ t 

holds for n ~< no. So, it is enough to prove the existence of the limit of 
v,(x, m, N) for all n. By Proposition 1.2, 

f~b(t) dv,,(x, m, N 1 -k- N2) - f ok(t) dv(D;','[ V NI - -n (x )  (~ V NI + n. NI + N.,(X))(/) 

2n II~bll 
~<N I +N2- -2n  

Let f u (x )=N~cb( t )dv . ( x ,m ,  N)(t); then the last inequality and Proposi- 
tion 1.3 imply 

J/NI + N2 (x) --/NI TM) - - f N 2 ( S N I x ) I  ~ Const(n) 

I fp  is S-ergodic, then R(x, m) is constant almost surely. 

This statement is the immediate corollary of the following result. 

L e m m a  1. The limit v ( x , m ) = l i m u  . . . .  v (x ,m ,N)  exists almost 
surely. 

Proof. Take ~be C[0, K~']. By the Proposition 1.1, given e, we can 
find a large no such that the inequality 
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so the statement of the lemma follows from the subadditive ergodic 
theorem applied to the sequences fN(X)-T-Const(n). | 

The next step is to show that the R(x, m) form a subadditive sequence. 

k e m m a  2. R(x, m / +  m2) ~< R(x, m~ ) + R(~"'2x, m2). 

Proof. Again it is enough to replace dcb"" by D',I" and d ~  ''1' +'''-~(x) by 
D','/'-(qY"'(x)) D',','~(x). But in view of (5) 

R(D;;"-(qs"'~(x)) D',',n(x) [ VN(x))~< R,,(x, In,, N) + R,,(~""(x), mz, N + n )  

and the lemma follows by Corollary 1.2. | 

The application of the subadditive ergodic theorem yields the following 
result. 

Theorem 2. If/2 is also tb-invariant, then the limit 

R(x, m) 

m 
R(x) = lim 

I I I  ~ c .e_ 

exists almost surely and 

f R ( x ) d p ( x ) =  lim f R(x, m)d/2(x) 
J 

I fp  is (S, ~)-ergodic, then R(x) is constant almost surely. 

Remark. Set 

r(x, c, m, N) = In max det(d~"'(x) I E) 
E c  I " V ( x ) .  d i m  E = c N  

By the same subadditivity arguments it is possible to prove the existence of 
the limits 

r(x, c, m, N) r(x, c, m) 
r(x, c, m) = lim , r(x, e) = lira 

N ~ ,~_ N ,,1 ~ ,:,_ m 

The calculation of r(x, c, m, N) can be done using the following observa- 
A A / , -  , . tion. Let .... ,v~X) be the kth exterior power of dqS"'(x)[ VN(x); then 

(X, C, In ,  N )  A cN = in 21(A,,,. N(X)) and therefore 

In /x cN A cN Tr(A,,. N(X)) - - N  dim Xln  2 ~< r(x, c, m, N) ~< In Tr(A,,,. N (X)) 
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so [ In Tr(A ~,'~,,V(x) ) ] ~raN is a good approximation to r(x, c, m, N) /mN if m 
is large enough (cf. ref. 11 and the discussion in the introduction)�9 R(x) can 
be expressed in terms of r(x, c) as follows: R(x) = sup, r(x, c). 

5. RUELLE INEQUALITY 

In this section we prove an infinite-dimensional counterpart of the 
Ruelle inequality. (v) 

T h e o r e m  3. If/~ is an (S, 45)-invariant measure, then h(/~)~< ~ R(x) 
d/l(x). 

Proof. This statement can be proven by exactly the same arguments 
as in ref. 7. Let T be a triangulation of Xo and Tk be a k-fold barycentric 
subdivision of T. Since 

V V V s"e"'rk 

is the Borel a-algebra of X, we have hs.,I,(~)=limk ..... hs,t,(Tk,lt). The 
last expression can be bounded by lima ...... h(Tk. ulqS-ITk. N), where 
Tk N = V'Y --N SJTk . Denote by CT~.,~(X) the element of Tk ,v containing x 

�9 . / =  ~ 

and let F(k, N, x) be the number of elements C~-~.,,. of Tk. N such that 
C./ r~. ,,. c~ ~CT~..,.(x) ~ ~ ;  then 

h( tk. N I ~ -ITk. N) ~ f In F(k, N, x) d/l(x) 

Let d k be the diameter of Tk. We can find constants n k, C(k, flk such that 
X-[N+,,O.- N X XN. U+,,* can be covered by (1/0Ck)"k balls B x of radius flk 

t II t I such that if x ; - x i  for Jil<<.N and (p_~N+,kl._NX,pN.N+,,kX) and 
(p_lN+mk_uX",PN�9 n) belong to the same ball, then d(poqb(X'), 
pufiS(X")) ~ d  k. For k large enough the number of elements of T~,-, such 
that ~(B N) c~ C~,. ,,. is nonempty is bounded by cN(T) C u exp R(x, 1, N), 
where C~ is a constant depending on the choice of the initial triangulation 
T, C3 depends only on dim X, and x is any point in B x. For such a large 
k we have 

F(k, N, x )  ~< e Rc x. l�9 N)g~N[',Nt~cnk ~2 ~3 ~k 

Making N go to infinity gives 

hs.,t,(Tk,l~)<<.ln C2+ln  C3 + f R(x, 1) d/~(x) 
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and therefore 

ks, ,t,(P) <~ In C2 + In C3 + f R(x, 1 ) dp(x) 

Replacing r by q~"', we obtain 

mhs. ,t,(P) ~< In C2 + In3 + f R(x, m) dp(x) 

Dividing by m and passing to the limit m--* 0o provides the statement 
claimed. II 

6. SBR M E A S U R E  

In ref. 5 a measure for r with the properties similar to those of the 
SBR measure in the finite-dimensional case was constructed under the 
assumption that q~ is a small perturbation of a system of noninteracting 
hyperbolic mappings. 

Here we recall this construction. Let A be a hyperbolic attractor for f 
such that f [  A is topologically transitive. Then the tangent space at every point 
x e A can be decomposed into the sum T,X= E"'~(x)+ E~"~(x), where 

df"[ r..,,,,,,.,/> K3K~ (6) 

df -"l,~.,,,.,., >~ K3K~ (7) 

and the angle 

/ (E"'~(x), El"l(x))/> Y3 (8) 

for some constants K3, ~c3 > 1, and Y3. 
Consider a sequence of embeddings Iu: XN --* X such that [[I N [[ c.2 ~< K 4 

and PuIu=id and let ( IgN=PNoCI )  o I  N and fN=PNofoIN SO that 
(f,v(Xqm))~=f(x~/V~). The following statements hold if K~ and K~ are small 
enough and J is close to identity in CZ-norm~51: 

(1) (~)N has an attractor A N o n  which (~N is conjugated to 

f , v  I n; '~  _,,, .,, 

and q, has an attractor A on which q5 is conjugated to 

fl n~ .,, 

In both cases the conjugation is close to identity; 
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(2) ~A, is hyperbolic o n  A N and �9 is hyperbolic on A. Moreover, the 
constants K3, x3, and ~'3 can be chosen so that formulas (6)-(8) hold with 
f replaced by (~)N o r  (~. 

(3) Let H r be a Markov partition for J~ H/;, and Hr be partitions 
whose elements are products of elements of H and Hq,,., and 17,1, be their 
images under the above-mentioned conjugations. H allows us to identify 
fl.J with a subshift of the finite type (2"~, ~) with an alphabet { 1 .. .  1}, 
where / = Card(H). Then q~U and tb are semiconjugated to subshifts (Z'~, ~, cr) 
and (2; A, ~), respectively, with alphabets { 1.-. l} _,,v+, and { 1..-l} z, respec- 
tively, and the transition matrices given by 

N 

A.(r"'. r ' -" )= 1-] A;,,, i,-',. A( r" '  r ' -" )= I-I A,,,  .,-', / " ! n tl . i, I 

i = - .V j ~  Z 

The mapping S acts on 12 as the space shift S(F)~ = i~ +~, where the super- 
script signifies the time coordinate and the subscript stands for the space 
coordinate. Let/zx be the SBR measure o n  A N and fiN be its pullback to Z'N. 
It is proven in ref. 5 that the {/~u} converge to a measure kt on A, that is, if 
g: X --+ R is a function depending only on a finite number of coordinates, then 

f g dp ,  --+ f g dp (9) 

Moreover, if 12 is the pullback of ll on I2 then the conditional expectations 
converge as well: 

^ .o i" . .  i ( ) N  ' i , v  I . -  I . - "  ll,v(t.I _~ . . . .  t_,v.-'l~. ' ' " )  

/x(t~J" .o i o I ""  i ~  I F - 2 . - . F  - - i . . . )  

The measure ll is mixing with respect to both S and q~. 
We now specify Lv to be the periodic embedding ( I N ( x ( N ) ) ) i = x ~ N )  , 

where i_= j mod(2N + 1 ). The immediate corollary of the above-mentioned 
properties of 2 and S-invariance of 2,v is the following statement. 

Corollary 2. h s . , t , ( l L ) = l i m x _ ~ ( l / N ) h , l , , ( l l N ) .  

7. PESIN FORMULA 

Let p be SBR measure for ~. Since It is both S and ~-ergodic, R ( m )  = 
R(m, x) does not depend on x. We write R , ( q ) ) =  iim . . . . . . .  [ R ( m ) / m ] .  
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Theorem 4. hs.r 

Proof. We combine Corollary 2 with Pesin formula for r to get 

hs.,1,(p)= lim lim 1 I A . . . . . . . . . . .  mN R(d~':4) dpN(X~N~) 

Our concern now is to show that the last two limits can be interchanged. 
Consider the decomposit ion 

T v w,,~,..IX,, E~/,;~(x,N,) vl ,~ ,,,x N = * .a  N ~ :" I "4- 

and let a new metric (.,.)' on T.,-,,,,XN be given by the conditions llvll~ = llvll_, 
for (,,) (N} V e E u (x ) or v ~ E~?(x Iu~) and E~(~ ~/' ~v~"~,v �9 Since 

H" 112 
..211 �9 IIv~ ~ I1" I1'_, ~< x/1 _ cos ~,~ 

Corollary 1.4 implies 

det(d~NlE,v (x ) ) [ ~ C 4 N  [R(d~'~',) - In ,,, I,,~ .Ix~ 

that is, 

But since 

• R(d~'~) - ~ In det(d~"~',iE~9(X N) <~ C4 
m 

m I + m ,  det (d~  u -[E~:'(x~NI)) 

det(d~,:l,a.l,,itm,,,,t,.i,v~ ,,, I,,) I = de t (d~  v [E ,  e (x :v~)) ~ N  " r N  ' , ' "  I 1 !  

the last inequality gives 

li'm 1 f Rtd@,,,~ 1 . .  f dp:v ~<--Ca 
~. N )  nTOJV ., '  /'/'10 

and hence 

hs.,l,(P) = lim lim ~ f R(d~','4(x ''v') dpx 
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as claimed. Let us calculate the interior limit. By the same arguments as in the 
proof of Theorem 1, given e, we can find Lt~ so large that for L >/Lo 

I N /L  I R(d~' , ) -  ~ R(dqS~,'~',[ V iL+~"/+l~L(X(m))~ <~eN 
i = -- NIL 

and, since PN is S-invariant, 

I f R(d~''~)dktN('\'{u')-lL j 'R(d~'~[ v L ( x ( N ) ) ) d ~ N ( X  (N) )  ~ 

In other words, 

hs.~(/z)= lim lim lim - -1  fR(d~',~[ vL( , '~(N)))~  d ~ N  
,tt ~ :1 L -  r_ N-,-,_ mt  

By the short-range conditions ( 1 )-(2) there is Cs = Cs(m, L) such that 

m I N )  JJ(d~,v(X )J VL(x(N))) -- (d((Ig"'o/N}(XIN)} J VL(x(N)))]I <~ C5K~' 

Therefore 

hs,,,,(/~)= lim l i m  lim 1 [ "" t . . . . . . .  N- - ' , _  ~ I L .  R(dr165 

By construction of the measure/~ [ see formula (9)] the interior limit is equal 
to I R(dr VL(x)) d~(x) and hence 

hs. ,,,(lt) = lim lim 1-- 7 ~ R(dq~"'[ VL(x)) dlt(x) 
,I 

R(m) 
= lira - - = R I , ( ~ ) .  | 
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